Python指南-5-数据结构


子目录


  • 5.1
    深入链表



    • 5.1.1
      把链表当作堆栈使用


    • 5.1.2
      把链表当作队列使用


    • 5.1.3
      函数化编程工具


    • 5.1.4
      链表推导式



  • 5.2 del
    语句

  • 5.3
    拓扑(Tuples
    ) 和 序列(Sequences



  • 5.4
    字典(Dictionaries



  • 5.5
    循环技巧

  • 5.6
    深入条件控制


  • 5.7
    比较序列(Sequences
    )和其它类型



?
5. 数据结构
本章节深入讲述一些你已经学习过的东西,并且还加入了新的内容。
?
5.1 深入链表
链表类型有很多方法,这里是链表类型的所有方法:
append(
x)
把一个元素添加到链表的结尾,相当于 a[len(a):] = [x]。
extend(
L)
通过添加指定链表的所有元素来扩充链表,相当于 a[len(a):] = L 。
insert(
i, x)
在指定位置插入一个元素。第一个参数是准备插入到其前面的那个元素的索引,例如 a.insert(0, x) 会插入到整个链表之前,而 a.insert(len(a), x) 相当于 a.append(x)。
remove(
x)
删除链表中值为x的第一个元素。如果没有这样的元素,就会返回一个错误。
pop(
)
从链表的指定位置删除元素,并将其返回。如果没有指定索引,a.pop() 返回最后一个元素。元素随即从链表中被删除。(方法中i两边的方括号表示这个参数是可选的,而不是要求你输入一对方括号,你会经常在Python 库参考手册中遇到这样的标记。)
index(
x)
返回链表中第一个值为x的元素的索引。如果没有匹配的元素就会返回一个错误。
count(
x)
返回x在链表中出现的次数。
sort(
)
对链表中的元素进行适当的排序。
reverse(
)
倒排链表中的元素。
下面这个示例演示了链表的大部分方法:
>>> a = [66.6, 333, 333, 1, 1234.5]
>>> print a.count(333), a.count(66.6), a.count('x')
2 1 0
>>> a.insert(2, -1)
>>> a.append(333)
>>> a
[66.6, 333, -1, 333, 1, 1234.5, 333]
>>> a.index(333)
1
>>> a.remove(333)
>>> a
[66.6, -1, 333, 1, 1234.5, 333]
>>> a.reverse()
>>> a
[333, 1234.5, 1, 333, -1, 66.6]
>>> a.sort()
>>> a
[-1, 1, 66.6, 333, 333, 1234.5]
5.1.1 把链表当作堆栈使用
链表方法使得链表可以很方便的做为一个堆栈来使用,堆栈是这样的数据结构,最先进入的元素最后一个被释放(后进先出)。用 append() 方法可以把一个元素添加到堆栈顶。用不指定索引的 pop() 方法可以把一个元素从堆栈顶释放出来。例如:
>>> stack = [3, 4, 5]
>>> stack.append(6)
>>> stack.append(7)
>>> stack
[3, 4, 5, 6, 7]
>>> stack.pop()
7
>>> stack
[3, 4, 5, 6]
>>> stack.pop()
6
>>> stack.pop()
5
>>> stack
[3, 4]
5.1.2 把链表当作队列使用
你也可以把链表当做队列使用,队列是这样的数据结构,最先进入的元素最先释放(先进先出)。使用 append()方法可以把元素添加到队列最后,以0为参数调用 pop() 方法可以把最先进入的元素释放出来。例如:
>>> queue = ["Eric", "John", "Michael"]
>>> queue.append("Terry")           # Terry arrives
>>> queue.append("Graham")          # Graham arrives
>>> queue.pop(0)
'Eric'
>>> queue.pop(0)
'John'
>>> queue
['Michael', 'Terry', 'Graham']
5.1.3 函数化编程工具
对于链表来讲,有三个内置函数非常有用:filter(), map(), 和 reduce()。
“filter(function, sequence)” 返回一个序列(sequence),包括了给定序列中所有调用function(item)后返回值为true的元素。(如果可能的话,会返回相同的类型)。例如,以下程序可以计算部分素数:
>>> def f(x): return x % 2 != 0 and x % 3 != 0
...
>>> filter(f, range(2, 25))
[5, 7, 11, 13, 17, 19, 23]
“map(function, sequence)” 为每一个元素依次调用 function(item) 并将返回值组成一个链表返回。例如,以下程序计算立方:
>>> def cube(x): return x*x*x
...
>>> map(cube, range(1, 11))
[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]
可以传入多个序列,函数也必须要有对应数量的参数,执行时会依次用各序列上对应的元素来调用函数(如果某些序列比其它的短,就用None来代替)。如果把None做为一个函数传入,则直接返回参数做为替代。
组合这两种情况,我们会发现“map(None, list1, list2)”是把一对序列变成元素对序列的便捷方式。例如:
>>> seq = range(8)
>>> def square(x): return x*x
...
>>> map(None, seq, map(square, seq))
[(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25), (6, 36), (7, 49)]
"reduce(func, sequence)" 返回一个单值,它是这样构造的:首先以序列的前两个元素调用函数,再以返回值和第三个参数调用,依次执行下去。例如,以下程序计算1到10的整数之和:
>>> def add(x,y): return x+y
...
>>> reduce(add, range(1, 11))
55
如果序列中只有一个元素,就返回它,如果序列是空的,就抛出一个异常。
可以传入第三个参数做为初始值。如果序列是空的,就返回初始值,否则函数会先接收初始值和序列的第一个元素,然后是返回值和下一个元素,依此类推。例如:
>>> def sum(seq):
...     def add(x,y): return x+y
...     return reduce(add, seq, 0)
...
>>> sum(range(1, 11))
55
>>> sum([])
0
不要像示例中这样定义 sum():因为合计数值是一个通用的需求,在新的2.3版中,提供了内置的 sum(sequence) 函数。
5.1.4 链表推导式
链表推导式提供了一个创建链表的简单途径,无需使用 map(), filter() 以及 lambda。返回链表的定义通常要比创建这些链表更清晰。每一个链表推导式包括在一个for语句之后的表达式,零或多个for或if语句。返回值是由for或if子句之后的表达式得到的元素组成的链表。如果想要得到一个拓扑,必须要加上括号。
>>> freshfruit = ['  banana', '  loganberry ', 'passion fruit  ']
>>> [weapon.strip() for weapon in freshfruit]
['banana', 'loganberry', 'passion fruit']
>>> vec = [2, 4, 6]
>>> [3*x for x in vec]
[6, 12, 18]
>>> [3*x for x in vec if x > 3]
[12, 18]
>>> [3*x for x in vec if x
[]
>>> [[x,x**2] for x in vec]
[[2, 4], [4, 16], [6, 36]]
>>> [x, x**2 for x in vec]      # error - parens required for tuples
  File "", line 1, in ?
    [x, x**2 for x in vec]
               ^
SyntaxError: invalid syntax
>>> [(x, x**2) for x in vec]
[(2, 4), (4, 16), (6, 36)]
>>> vec1 = [2, 4, 6]
>>> vec2 = [4, 3, -9]
>>> [x*y for x in vec1 for y in vec2]
[8, 6, -18, 16, 12, -36, 24, 18, -54]
>>> [x+y for x in vec1 for y in vec2]
[6, 5, -7, 8, 7, -5, 10, 9, -3]
>>> [vec1*vec2 for i in range(len(vec1))]
[8, 12, -54]
为使链表推导式匹配for循环的行为,可以在推导之外保留循环变量:
>>> x = 100                     # this gets overwritten
>>> [x**3 for x in range(5)]
[0, 1, 8, 27, 64]
>>> x                           # the final value for range(5)
4
?
5.2 del 语句
有一个方法可从链表中删除指定索引的元素:del语句。这个方法也可以从链表中删除切片(之前我们是把一个空链表赋给切片)。例如:
>>> a = [-1, 1, 66.6, 333, 333, 1234.5]
>>> del a[0]
>>> a
[1, 66.6, 333, 333, 1234.5]
>>> del a[2:4]
>>> a
[1, 66.6, 1234.5]
del 也可以用于删除整个变量:
>>> del a
此后再引用这个名字会发生错误(至少要到给它赋另一个值为止)。后面我们还会发现del的其它用法。
?
5.3 拓扑(Tuples)和序列(Sequences )
我们知道链表和字符串有很多通用的属性,例如索引和切片操作。它们是序列类型中的两种。因为Python是一个在不停进化的语言,也可以加入其它的序列类型,这里有另一种标准序列类型:拓扑。
一个拓扑由数个逗号分隔的值组成,例如:
>>> t = 12345, 54321, 'hello!'
>>> t[0]
12345
>>> t
(12345, 54321, 'hello!')
>>> # Tuples may be nested:
... u = t, (1, 2, 3, 4, 5)
>>> u
((12345, 54321, 'hello!'), (1, 2, 3, 4, 5))
如你所见,拓扑在输出时总是有括号的,以便于正确表达嵌套结构。在输入时可能有或没有括号都可以,不过经常括号都是必须的(如果拓扑是一个更大的表达式的一部分)。
拓扑有很多用途。例如(x, y)坐标点,数据库中的员工记录等等。拓扑就像字符串,不可改变:不能给拓扑的一个独立的元素赋值(尽管你可以通过联接和切片来模仿)。也可以通过包含可变对象来创建拓扑,例如链表。
一个特殊的问题是构造包含零个或一个元素的拓扑:为了适应这种情况,语法上有一些额外的改变。一对空的括号可以创建空拓扑;要创建一个单元素拓扑可以在值后面跟一个逗号(在括号中放入一个单值是不够的)。丑陋,但是有效。例如:
>>> empty = ()
>>> singleton = 'hello',    #
>>> len(empty)
0
>>> len(singleton)
1
>>> singleton
('hello',)
语句 t = 12345, 54321, 'hello!' 是拓扑封装(sequence packing)的一个例子:值 12345, 54321 和 'hello!' 被封装进拓扑。其逆操作可能是这样:
>>> x, y, z = t
这个调用被称为序列拆封非常合适。序列拆封要求左侧的变量数目与序列的元素个数相同。要注意的是可变参数(multiple assignment
)其实只是拓扑封装和序列拆封的一个结合!
这里有一点不对称:封装多重参数通常会创建一个拓扑,而拆封操作可以作用于任何序列。
?
5.4 字典(Dictionaries)
另一个非常有用的Python内建数据类型是字典(Dictionaries)。字典在某些语言中可能称为“联合内存”(``associative memories'')或“联合数组”(``associative arrays'')。序列是以连续的整数为索引,与此不同的是,字典以关键字为索引,关键字可以是任意不可变类型,通常用字符串或数值。如果拓扑中只包含字符串和数字,它可以做为关键字,如果它直接或间接的包含了可变对象,就不能当做关键字。不能用链表做关键字,因为链表可以用它们的 append() 和 extend() 方法,或者用切片、或者通过检索变量来即时改变。
理解字典的最佳方式是把它看做无序的关键字:值对( key:value pairs )集合,关键字必须是互不相同的(在同一个字典之内)。一对大括号创建一个空的字典:{}。初始化链表时,在大括号内放置一组逗号分隔的关键字:值对,这也是字典输出的方式。
字典的主要操作是依据关键字来存储和析取值。也可以用del来删除关键字:值对。如果你用一个已经存在的关键字存储值,以前为该关键字分配的值就会被遗忘。试图析取从一个不存在的关键字中读取值会导致错误。
字典的keys() 方法返回由所有关键字组成的链表,该链表的顺序不定(如果你需要它有序,只能调用关键字链表的sort()方法)。使用字典的 has_key() 方法可以检查字典中是否存在某一关键字。
这是一个关于字典应用的小示例:
>>> tel = {'jack': 4098, 'sape': 4139}
>>> tel['guido'] = 4127
>>> tel
{'sape': 4139, 'guido': 4127, 'jack': 4098}
>>> tel['jack']
4098
>>> del tel['sape']
>>> tel['irv'] = 4127
>>> tel
{'guido': 4127, 'irv': 4127, 'jack': 4098}
>>> tel.keys()
['guido', 'irv', 'jack']
>>> tel.has_key('guido')
True
链表中存储关键字-值对拓扑的话,字典可以从中直接构造。关键字-值对来自一个模式时,可以用链表推导式简单的表达关键字-值链表。
>>> dict([('sape', 4139), ('guido', 4127), ('jack', 4098)])
{'sape': 4139, 'jack': 4098, 'guido': 4127}
>>> dict([(x, x**2) for x in vec])     # use a list comprehension
{2: 4, 4: 16, 6: 36}
?
5.5 循环技巧
在字典中循环时,关键字和对应的值可以使用 items() 方法同时解读出来。
>>> knights = {'gallahad': 'the pure', 'robin': 'the brave'}
>>> for k, v in knights.items():
...     print k, v
...
gallahad the pure
robin the brave
在序列中循环时,索引位置和对应值可以使用 enumerate() 函数同时得到。

>>> for i, v in enumerate(['tic', 'tac', 'toe']):
...     print i, v
...
0 tic
1 tac
2 toe
同时循环两个或更多的序列,可以使用 zip() 整体解读。
>>> questions = ['name', 'quest', 'favorite color']
>>> answers = ['lancelot', 'the holy grail', 'blue']
>>> for q, a in zip(questions, answers):
...     print 'What is your %s?  It is %s.' % (q, a)
...     
What is your name?  It is lancelot.
What is your quest?  It is the holy grail.
What is your favorite color?  It is blue.
?
5.6 深入条件控制
用于while和if语句的条件包括了比较之外的操作符。
in和not比较操作符审核值是否在一个区间之内。操作符is和is not比较两个对象是否相同;这只和诸如链表这样的可变对象有关。所有的比较操作符具有相同的优先级,低于所有的数值操作。
比较操作可以传递。例如 a  审核是否a小于b并b等于c。
比较操作可以通过逻辑操作符and和or组合,比较的结果可以用not来取反义。这些操作符的优先级又低于比较操作符,在它们之中,not具有最高的优先级,or的优先组最低,所以A and not B or C 等于 (A and (not B)) or C。当然,表达式可以用期望的方式表示。
逻辑操作符and 和or 也称作短路操作符:它们的参数从左向右解析,一旦结果可以确定就停止。例如,如果A和C为真而B为假,A and B and C 不会解析C。作用于一个普通的非逻辑值时,短路操作符的返回值通常是最后一个变量。
可以把比较或其它逻辑表达式的返回值赋给一个变量,例如:
>>> string1, string2, string3 = '', 'Trondheim', 'Hammer Dance'
>>> non_null = string1 or string2 or string3
>>> non_null
'Trondheim'
需要注意的是Python与C不同,内部表达式不能分配值。C 程序员经常对此抱怨,不过它避免了一类在C程序中司空见惯的错误:想要在解析式中使==时误用了=操作符。
?
5.7 比较序列和其它类型
序列对象可以与相同类型的其它对象比较。比较操作按字典序进行:首先比较前两个元素,如果不同,就决定了比较的结果;如果相同,就比较后两个元素,依此类推,直到所有序列都完成比较。如果两个元素本身就是同样类型的序列,就递归字典序比较。如果两个序列的所有子项都相等,就认为序列相等。如果一个序列是另一个序列的初始子序列,较短的一个序列就小于另一个。字符串的字典序按照单字符的ASCII顺序。下面是同类型序列之间比较的一些例子:
(1, 2, 3)              
[1, 2, 3]              
'ABC'
(1, 2, 3, 4)           
(1, 2)                 
(1, 2, 3)             == (1.0, 2.0, 3.0)
(1, 2, ('aa', 'ab'))   
需要注意的是不同类型的对象比较是合法的。输出结果是确定而非任意的:类型按它们的名字排序。因而,一个链表(list)总是小于一个字符串(string),一个字符串(string)总是小于一个拓扑(tuple)等等。数值类型比较时会统一它们的数据类型,所以0等于0.0,等等。
5.1

注释
... etc.
5.1

不同类型对象的比较规则不依赖于此,它们有可能会在Python语言的后继版本中改变。