装好的scipy,进行测试,还有一点点没有通过。

装好的scipy,进行测试,还有一点点没有通过。

进行的测试如下:

import numpy
numpy.test(1,1)
import scipy
scipy.test(10)

测试结果如下:

numpy安装成功,而scipy好像还有问题,哪为高手看看,我还需要解决什么问题,或者,不许要管就可
以正常用scipy了。谢谢




Python 2.4.4 (#1, Oct 18 2006, 10:34:39)
[GCC 4.0.1 (Apple Computer, Inc. build 5341)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import numpy
>>> numpy.test(1,1)
  Found 5 tests for numpy.distutils.misc_util
  Found 3 tests for numpy.lib.getlimits
  Found 31 tests for numpy.core.numerictypes
  Found 32 tests for numpy.linalg
  Found 13 tests for numpy.core.umath
  Found 4 tests for numpy.core.scalarmath
  Found 9 tests for numpy.lib.arraysetops
  Found 42 tests for numpy.lib.type_check
  Found 185 tests for numpy.core.multiarray
  Found 3 tests for numpy.fft.helper
  Found 36 tests for numpy.core.ma
  Found 12 tests for numpy.lib.twodim_base
  Found 10 tests for numpy.core.defmatrix
  Found 1 tests for numpy.lib.ufunclike
  Found 4 tests for numpy.ctypeslib
  Found 41 tests for numpy.lib.function_base
  Found 2 tests for numpy.lib.polynomial
  Found 9 tests for numpy.core.records
  Found 26 tests for numpy.core.numeric
  Found 4 tests for numpy.lib.index_tricks
  Found 47 tests for numpy.lib.shape_base
  Found 0 tests for __main__
.......................................................................................................................................................................................................................................................................................................................................................................Warning: divide by zero encountered in arcsin
Warning: divide by zero encountered in arcsin
................................................................................................................................................................
----------------------------------------------------------------------
Ran 519 tests in 1.031s

OK
<unittest.TextTestRunner object at 0x149db90>
>>> import scipy
>>> scipy.test(10)
Warning: FAILURE importing tests for <module 'scipy.linsolve.umfpack.umfpack' from '...y/linsolve/umfpack/umfpack.pyc'>
/Library/Frameworks/Python.framework/Versions/2.4/lib/python2.4/site-packages/scipy/linsolve/umfpack/tests/test_umfpack.py:17: AttributeError: 'module' object has no attribute 'umfpack' (in ?)
  Found 4 tests for scipy.io.array_import
  Found 1 tests for scipy.cluster.vq
  Found 128 tests for scipy.linalg.fblas
  Found 397 tests for scipy.ndimage
  Found 10 tests for scipy.integrate.quadpack
  Found 98 tests for scipy.stats.stats
  Found 54 tests for scipy.linalg.decomp
  Found 3 tests for scipy.integrate.quadrature
  Found 95 tests for scipy.sparse.sparse
  Found 24 tests for scipy.fftpack.pseudo_diffs
  Found 6 tests for scipy.optimize.optimize
  Found 6 tests for scipy.interpolate.fitpack
  Found 6 tests for scipy.interpolate
  Found 70 tests for scipy.stats.distributions
  Found 12 tests for scipy.io.mmio
  Found 10 tests for scipy.stats.morestats
  Found 4 tests for scipy.linalg.lapack
  Found 23 tests for scipy.fftpack.basic
Warning: FAILURE importing tests for <module 'scipy.linsolve.umfpack' from '.../linsolve/umfpack/__init__.pyc'>
/Library/Frameworks/Python.framework/Versions/2.4/lib/python2.4/site-packages/scipy/linsolve/umfpack/tests/test_umfpack.py:17: AttributeError: 'module' object has no attribute 'umfpack' (in ?)
  Found 5 tests for scipy.optimize.zeros
  Found 28 tests for scipy.io.mio
  Found 44 tests for scipy.linalg.basic
  Found 2 tests for scipy.maxentropy.maxentropy
  Found 358 tests for scipy.special.basic
  Found 128 tests for scipy.lib.blas.fblas
  Found 7 tests for scipy.linalg.matfuncs

****************************************************************
WARNING: clapack module is empty
-----------
See scipy/INSTALL.txt for troubleshooting.
Notes:
* If atlas library is not found by numpy/distutils/system_info.py,
  then scipy uses flapack instead of clapack.
****************************************************************

  Found 42 tests for scipy.lib.lapack
  Found 1 tests for scipy.optimize.cobyla
  Found 16 tests for scipy.lib.blas
  Found 1 tests for scipy.integrate
  Found 14 tests for scipy.linalg.blas
  Found 4 tests for scipy.fftpack.helper
  Found 4 tests for scipy.signal.signaltools
  Found 0 tests for __main__

Don't worry about a warning regarding the number of bytes read.
Warning: 1000000 bytes requested, 20 bytes read.
........caxpy:n=4
..caxpy:n=3
....ccopy:n=4
..ccopy:n=3
.............cscal:n=4
....cswap:n=4
..cswap:n=3
.....daxpy:n=4
..daxpy:n=3
....dcopy:n=4
..dcopy:n=3
.............dscal:n=4
....dswap:n=4
..dswap:n=3
.....saxpy:n=4
..saxpy:n=3
....scopy:n=4
..scopy:n=3
.............sscal:n=4
....sswap:n=4
..sswap:n=3
.....zaxpy:n=4
..zaxpy:n=3
....zcopy:n=4
..zcopy:n=3
.............zscal:n=4
....zswap:n=4
..zswap:n=3
.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
           Finding matrix eigenvalues
      ==================================
      |    contiguous     
----------------------------------------------
size |  scipy  
   20 |   0.10     (secs for 150 calls)
  100 |   0.13     (secs for 7 calls)
  200 |   0.22     (secs for 2 calls)
....................................Took 13 points.
...........Resizing... 16 17 24
Resizing... 20 7 35
Resizing... 23 7 47
Resizing... 24 25 58
Resizing... 28 7 68
Resizing... 28 27 73
.....Use minimum degree ordering on A'+A.
........................Use minimum degree ordering on A'+A.
...................Resizing... 16 17 24
Resizing... 20 7 35
Resizing... 23 7 47
Resizing... 24 25 58
Resizing... 28 7 68
Resizing... 28 27 73
.....Use minimum degree ordering on A'+A.
.................Resizing... 16 17 24
Resizing... 20 7 35
Resizing... 23 7 47
Resizing... 24 25 58
Resizing... 28 7 68
Resizing... 28 27 73
.....Use minimum degree ordering on A'+A.
............
Differentiation of periodic functions
=====================================
size  |  convolve |    naive
-------------------------------------
   100 |      0.03 |      0.24  (secs for 1500 calls)
  1000 |      0.02 |      0.33  (secs for 300 calls)
   256 |      0.06 |      0.29  (secs for 1500 calls)
   512 |      0.05 |      0.26  (secs for 1000 calls)
  1024 |      0.05 |      0.50  (secs for 500 calls)
  2048 |      0.04 |      0.38  (secs for 200 calls)
  4096 |      0.04 |      0.31  (secs for 100 calls)
  8192 |      0.05 |      0.30  (secs for 50 calls)
..........
Hilbert transform of periodic functions
=========================================
size  | optimized |    naive
-----------------------------------------
   100 |      0.04 |      0.19  (secs for 1500 calls)
  1000 |      0.02 |      0.24  (secs for 300 calls)
   256 |      0.05 |      0.22  (secs for 1500 calls)
   512 |      0.05 |      0.18  (secs for 1000 calls)
  1024 |      0.05 |      0.35  (secs for 500 calls)
  2048 |      0.05 |      0.30  (secs for 200 calls)
  4096 |      0.05 |      0.25  (secs for 100 calls)
  8192 |      0.05 |      0.23  (secs for 50 calls)
........
Shifting periodic functions
==============================
size  | optimized |    naive
------------------------------
   100 |      0.04 |      0.24  (secs for 1500 calls)
  1000 |      0.02 |      0.35  (secs for 300 calls)
   256 |      0.05 |      0.31  (secs for 1500 calls)
   512 |      0.05 |      0.29  (secs for 1000 calls)
  1024 |      0.05 |      0.53  (secs for 500 calls)
  2048 |      0.04 |      0.40  (secs for 200 calls)
  4096 |      0.05 |      0.33  (secs for 100 calls)
  8192 |      0.04 |      0.32  (secs for 50 calls)
..
Tilbert transform of periodic functions
=========================================
size  | optimized |    naive
-----------------------------------------
   100 |      0.04 |      0.26  (secs for 1500 calls)
  1000 |      0.02 |      0.26  (secs for 300 calls)
   256 |      0.04 |      0.31  (secs for 1500 calls)
   512 |      0.05 |      0.27  (secs for 1000 calls)
  1024 |      0.04 |      0.41  (secs for 500 calls)
  2048 |      0.05 |      0.38  (secs for 200 calls)
  4096 |      0.04 |      0.30  (secs for 100 calls)
  8192 |      0.05 |      0.28  (secs for 50 calls)
........../Library/Frameworks/Python.framework/Versions/2.4/lib/python2.4/site-packages/scipy/interpolate/fitpack2.py:457: UserWarning:
The coefficients of the spline returned have been computed as the
minimal norm least-squares solution of a (numerically) rank deficient
system (deficiency=7). If deficiency is large, the results may be
inaccurate. Deficiency may strongly depend on the value of eps.
  warnings.warn(message)
................................................................................................Ties preclude use of exact statistic.
..Ties preclude use of exact statistic.
........
****************************************************************
WARNING: clapack module is empty
-----------
See scipy/INSTALL.txt for troubleshooting.
Notes:
* If atlas library is not found by numpy/distutils/system_info.py,
  then scipy uses flapack instead of clapack.
****************************************************************

..
                 Fast Fourier Transform
=================================================
      |    real input     |   complex input   
-------------------------------------------------
size |  scipy  |  numpy  |  scipy  |  numpy
-------------------------------------------------
  100 |    0.18 |    0.14 |    0.11 |    0.11  (secs for 7000 calls)
1000 |    0.36 |    0.45 |    0.40 |    0.29  (secs for 2000 calls)
  256 |    0.35 |    0.28 |    0.23 |    0.23  (secs for 10000 calls)
  512 |    0.38 |    0.53 |    0.40 |    0.46  (secs for 10000 calls)
1024 |    0.19 |    0.21 |    0.13 |    0.14  (secs for 1000 calls)
2048 |    0.37 |    0.42 |    0.23 |    0.27  (secs for 1000 calls)
4096 |    0.28 |    0.36 |    0.19 |    0.27  (secs for 500 calls)
8192 |    0.53 |    0.78 |    0.42 |    0.59  (secs for 500 calls)
....
    Multi-dimensional Fast Fourier Transform
===================================================
          |    real input     |   complex input   
---------------------------------------------------
   size   |  scipy  |  numpy  |  scipy  |  numpy
---------------------------------------------------
  100x100 |    0.12 |    0.16 |    0.11 |    0.15  (secs for 100 calls)
1000x100 |    0.12 |    0.14 |    0.12 |    0.14  (secs for 7 calls)
  256x256 |    0.10 |    0.13 |    0.10 |    0.12  (secs for 10 calls)
  512x512 |    0.17 |    0.20 |    0.18 |    0.19  (secs for 3 calls)
.....
       Inverse Fast Fourier Transform
===============================================
      |     real input    |    complex input   
-----------------------------------------------
size |  scipy  |  numpy  |  scipy  |  numpy  
-----------------------------------------------
  100 |    0.18 |    0.30 |    0.13 |    0.27  (secs for 7000 calls)
1000 |    0.35 |    0.76 |    0.47 |    0.68  (secs for 2000 calls)
  256 |    0.35 |    0.53 |    0.26 |    0.46  (secs for 10000 calls)
  512 |    0.40 |    0.77 |    0.41 |    0.70  (secs for 10000 calls)
1024 |    0.19 |    0.36 |    0.13 |    0.29  (secs for 1000 calls)
2048 |    0.39 |    2.57 |    0.23 |    0.50  (secs for 1000 calls)
4096 |    0.33 |    0.55 |    0.21 |    0.43  (secs for 500 calls)
8192 |    0.55 |    1.09 |    0.45 |    0.92  (secs for 500 calls)
.......
Inverse Fast Fourier Transform (real data)
==================================
size |  scipy  |  numpy  
----------------------------------
  100 |    0.16 |    0.31  (secs for 7000 calls)
1000 |    0.14 |    0.31  (secs for 2000 calls)
  256 |    0.30 |    0.49  (secs for 10000 calls)
  512 |    0.39 |    0.63  (secs for 10000 calls)
1024 |    0.06 |    0.14  (secs for 1000 calls)
2048 |    0.22 |    0.41  (secs for 1000 calls)
4096 |    0.14 |    0.31  (secs for 500 calls)
8192 |    0.31 |    0.56  (secs for 500 calls)
....
Fast Fourier Transform (real data)
==================================
size |  scipy  |  numpy  
----------------------------------
  100 |    0.16 |    0.13  (secs for 7000 calls)
1000 |    0.11 |    0.11  (secs for 2000 calls)
  256 |    0.31 |    0.23  (secs for 10000 calls)
  512 |    0.31 |    0.33  (secs for 10000 calls)
1024 |    0.06 |    0.06  (secs for 1000 calls)
2048 |    0.19 |    0.21  (secs for 1000 calls)
4096 |    0.14 |    0.18  (secs for 500 calls)
8192 |    0.27 |    0.35  (secs for 500 calls)
...
f2 is a symmetric parabola, x**2 - 1
f3 is a quartic polynomial with large hump in interval
f4 is step function with a discontinuity at 1
f5 is a hyperbola with vertical asymptote at 1
f6 has random values positive to left of 1, negative to right

of course these are not real problems. They just test how the
'good' solvers behave in bad circumstances where bisection is
really the best. A good solver should not be much worse than
bisection in such circumstance, while being faster for smooth
monotone sorts of functions.

TESTING SPEED

times in seconds for 2000 iterations

function f2

cc.bisect : 0.400
cc.ridder : 0.030
cc.brenth : 0.030
cc.brentq : 0.030



function f3

cc.bisect : 0.100
cc.ridder : 0.030
cc.brenth : 0.040
cc.brentq : 0.040



function f4

cc.bisect : 0.080
cc.ridder : 0.110
cc.brenth : 0.090
cc.brentq : 0.100



function f5

cc.bisect : 0.080
cc.ridder : 0.120
cc.brenth : 0.100
cc.brentq : 0.110



function f6

cc.bisect : 0.090
cc.ridder : 0.100
cc.brenth : 0.100
cc.brentq : 0.100



.................................
           Finding matrix determinant
      ==================================
      |    contiguous     |   non-contiguous
----------------------------------------------
size |  scipy  | basic   |  scipy  | basic
   20 |   0.20  |   0.28  |   0.21  |   0.24     (secs for 2000 calls)
  100 |   0.38  |   0.37  |   0.41  |   0.43     (secs for 300 calls)
  500 |   0.24  |   0.24  |   0.27  |   0.28     (secs for 4 calls)
......
           Finding matrix inverse
      ==================================
      |    contiguous     |   non-contiguous
----------------------------------------------
size |  scipy  | basic   |  scipy  | basic
   20 |   0.35  |   0.33  |   0.33  |   0.34     (secs for 2000 calls)
  100 |   0.90  |   1.42  |   0.91  |   1.48     (secs for 300 calls)
  500 |   0.64  |   1.26  |   0.69  |   0.84     (secs for 4 calls)
.................
      Solving system of linear equations
      ==================================
      |    contiguous     |   non-contiguous
----------------------------------------------
size |  scipy  | basic   |  scipy  | basic
   20 |   0.32  |   0.18  |   0.32  |   0.19     (secs for 2000 calls)
  100 |   0.41  |   0.37  |   0.42  |   0.42     (secs for 300 calls)
  500 |   0.26  |   0.25  |   0.28  |   0.25     (secs for 4 calls)
................................................................................................................................................................................................................................................................................................................................................................................................caxpy:n=4
..caxpy:n=3
....ccopy:n=4
..ccopy:n=3
.............cscal:n=4
....cswap:n=4
..cswap:n=3
.....daxpy:n=4
..daxpy:n=3
....dcopy:n=4
..dcopy:n=3
.............dscal:n=4
....dswap:n=4
..dswap:n=3
.....saxpy:n=4
..saxpy:n=3
....scopy:n=4
..scopy:n=3
.............sscal:n=4
....sswap:n=4
..sswap:n=3
.....zaxpy:n=4
..zaxpy:n=3
....zcopy:n=4
..zcopy:n=3
.............zscal:n=4
....zswap:n=4
..zswap:n=3
...Result may be inaccurate, approximate err = 2.66420674161e-08
...Result may be inaccurate, approximate err = 7.27595761418e-12
......................................................F.......Residual: 1.05006950433e-07
.
****************************************************************
WARNING: cblas module is empty
-----------
See scipy/INSTALL.txt for troubleshooting.
Notes:
* If atlas library is not found by numpy/distutils/system_info.py,
  then scipy uses fblas instead of cblas.
****************************************************************

.......F..............
======================================================================
FAIL: check_dot (scipy.lib.tests.test_blas.test_fblas1_simple)
----------------------------------------------------------------------
Traceback (most recent call last):
  File "/Library/Frameworks/Python.framework/Versions/2.4/lib/python2.4/site-packages/scipy/lib/blas/tests/test_blas.py", line 76, in check_dot
    assert_almost_equal(f([3j,-4,3-4j],[2,3,1]),-9+2j)
  File "/Library/Frameworks/Python.framework/Versions/2.4/lib/python2.4/site-packages/numpy/testing/utils.py", line 156, in assert_almost_equal
    assert round(abs(desired - actual),decimal) == 0, msg
AssertionError:
Items are not equal:
ACTUAL: 3.2499254780407681e-37j
DESIRED: (-9+2j)

======================================================================
FAIL: check_dot (scipy.linalg.tests.test_blas.test_fblas1_simple)
----------------------------------------------------------------------
Traceback (most recent call last):
  File "/Library/Frameworks/Python.framework/Versions/2.4/lib/python2.4/site-packages/scipy/linalg/tests/test_blas.py", line 75, in check_dot
    assert_almost_equal(f([3j,-4,3-4j],[2,3,1]),-9+2j)
  File "/Library/Frameworks/Python.framework/Versions/2.4/lib/python2.4/site-packages/numpy/testing/utils.py", line 156, in assert_almost_equal
    assert round(abs(desired - actual),decimal) == 0, msg
AssertionError:
Items are not equal:
ACTUAL: 3.2499218907166995e-37j
DESIRED: (-9+2j)

----------------------------------------------------------------------
Ran 1605 tests in 81.361s

FAILED (failures=2)
<unittest.TextTestRunner object at 0x2fb0f30>
>>>
没有人给点儿建议吗?是不是需要安装lapack, blas  库呢?
没用过啊。
hehe,也还是谢谢你:)
我新装的scipy5.1的测试 在window xp下也没能全部通过
刚换成numpy1.02rc 本来还没有注意

不过记得以前numpy-scipy4.6组合时 scipy好像也不是全通过的,但可以用
楼主我建议先这么用吧 毕竟未通过的测试不是根本性的
然后留意它的用户讨论组看如何解决。
en ,3ks,我也是这么认为的,就是心里老惦着,有朋友建议说安装blas, lapack。呵呵,再次谢谢你的建议。