在Linux操作系统中对ISA总线DMA的实现方法二

在Linux操作系统中对ISA总线DMA的实现方法二

  3 Linux对读写操作8237 DMAC的实现

  由于DMAC的各寄存器是在I/O端口空间中编址的,因此读写8237 DMAC是平台相关的。对于x86平台来说,Linux在include/asm-i386/Dma.h头文件中实现了对两个8237 DMAC的读写操作。

  3.1 端口地址和寄存器值的宏定义

  Linux用宏MAX_DMA_CHANNELS来表示系统当前的DMA通道个数,如下:
引用:
#define MAX_DMA_CHANNELS 8
  3.2 读写DMAC的高层接口函数

  (1)使能/禁止一个特定的DMA通道

  Single Channel Mask Register中的bit[2]为0表示使能一个DMA通道,为1表示禁止一个DMA通道;而该寄存器中的bit[1:0]则用于表示使能或禁止哪一个DMA通道。

  函数enable_dma()实现使能某个特定的DMA通道,传输dmanr指定DMA通道号,其取值范围是0~DMA_MAX_CHANNELS-1。如下:
引用:
static __inline__ void enable_dma(unsigned int dmanr)
{
if (dmanr<=3)
dma_outb(dmanr, DMA1_MASK_REG);
else
dma_outb(dmanr & 3, DMA2_MASK_REG);
}
  (4)为DMA通道设置DMA缓冲区的起始物理地址和大小

  由于8237中的DMA通道是通过一个8位的Page Register和一个16位的Address Register来寻址位于系统RAM中的DMA缓冲区,因此8237 DMAC最大只能寻址系统RAM中物理地址在0x000000~0xffffff范围内的DMA缓冲区,也即只能寻址物理内存的低16MB(24位物理地址)。反过来讲,Slave/Master 8237 DMAC又是如何寻址低16MB中的物理内存单元的呢?

  首先来看Slave 8237 DMAC(即第一个8237 DMAC)。由于Slave 8237 DMAC是一个8位的DMAC,因此DMA通道0~3在一次DMA传输操作(一个DMA传输事务又多次DMA传输操作组成)中只能传输8位数据,即一个字节。Slave 8237 DMAC将低16MB物理内存分成256个64K大小的页(Page),然后用Page Register来表示内存单元物理地址的高8位(bit[23:16]),也即页号;用Address Register来表示内存单元物理地址在一个Page(64KB大小)内的页内偏移量,也即24位物理地址中的低16位(bit[15:0])。由于这种寻址机制,因此DMA通道0~3的DMA缓冲区必须在一个Page之内,也即DMA缓冲区不能跨越64KB页边界。

  再来看看Master 8237 DMAC(即第二个8237 DMAC)。这是一个16位宽的DMAC,因此DMA通道5~7在一次DMA传输操作时可以传输16位数据,也即一个字word。此时DMA通道的Count Register(16位宽)表示以字计的待传输数据块大小,因此数据块最大可达128KB(64K个字),也即系统RAM中的DMA缓冲区最大可达128KB。由于一次可传输一个字,因此Master 8237 DMAC所寻址的内存单元的物理地址肯定是偶数,也即物理地址的bit[0]肯定为0。此时物理内存的低16MB被化分成128个128KB大小的page,Page Register中的bit[7:1]用来表示页号,也即对应内存单元物理地址的bit[23:17],而Page Register的bit[0]总是被设置为0。Address Register用来表示内存单元在128KB大小的Page中的页内偏移,也即对应内存单元物理地址的bit[16:1](由于此时物理地址的bit[0]总是为0,因此不需要表示)。由于Master 8237 DMAC的这种寻址机制,因此DMA通道5~7的DMA缓冲区不能跨越128KB的页边界。

  下面我们来看看Linux是如何实现为各DMA通道设置其Page寄存器的。NOTE!DMA通道5~7的Page Register中的bit[0]总是为0。如下所示:
引用:
static __inline__ void set_dma_page(unsigned int dmanr, char pagenr)
{
switch(dmanr) {
case 0:
dma_outb(pagenr, DMA_PAGE_0);
break;
case 1:
dma_outb(pagenr, DMA_PAGE_1);
break;
case 2:
dma_outb(pagenr, DMA_PAGE_2);
break;
case 3:
dma_outb(pagenr, DMA_PAGE_3);
break;
case 5:
dma_outb(pagenr & 0xfe, DMA_PAGE_5);
break;
case 6:
dma_outb(pagenr & 0xfe, DMA_PAGE_6);
break;
case 7:
dma_outb(pagenr & 0xfe, DMA_PAGE_7);
break;
}
}